Foreign trade
IEX2PROD_raw <-
statgl_url("IEX2PROD", lang = language) %>%
statgl_fetch(
branch = px_all(),
quarter = 1:4,
time = px_top(1),
.col_code = TRUE
) %>%
as_tibble()
IEX2PROD <-
IEX2PROD_raw %>%
mutate(branch = branch %>% fct_inorder()) %>%
filter(branch %>% str_detect("-[:digit:]")) %>%
mutate(
quarter = quarter %>% fct_inorder(),
branch = branch %>% str_remove_all("[:digit:]|[:punct:]") %>% trimws(),
branch = branch %>% fct_inorder()
) %>%
filter(value != "Na") %>%
spread(quarter, value)
IEX2PROD %>%
select(-time) %>%
rename(" " = 1) %>%
statgl_table() %>%
pack_rows(index = IEX2PROD[["time"]] %>% table()) %>%
row_spec(1, bold = TRUE)
|
|
quarter 1
|
quarter 2
|
|
2025
|
|
Exports total
|
1.137.555.286
|
1.139.725.750
|
|
Agricultural products of animals origin total
|
333.055
|
49.397
|
|
Manufactures goods total
|
245.600.659
|
305.413.170
|
|
Ships of more than GT aircraft and drilling rigs and production
platforms total
|
NA
|
20.588
|
|
Fish crustaceans and molluscs not prepared or preserved total
|
890.665.665
|
804.009.658
|
|
Fuels lubricant and current total
|
3.884
|
7.043
|
|
Other goods total
|
952.023
|
30.225.894
|
See the table in our Statbank: IEX2PROD
IEXANV_raw <-
statgl_url("IEXANV", lang = language) %>%
statgl_fetch(
quarter = 1:4,
time = px_top(1),
"end-use" = px_all(),
.col_code = TRUE
) %>%
as_tibble()
IEXANV <-
IEXANV_raw %>%
filter(`end-use` %>% word(1) %>% str_detect("-")) %>%
mutate(
`end-use` = `end-use` %>% str_remove_all("[:digit:]|[:punct:]") %>% trimws(),
`end-use` = `end-use` %>% fct_inorder()
) %>%
filter(value != "Na") %>%
spread(quarter, value)
IEXANV %>%
select(-time) %>%
rename(" " = 1) %>%
statgl_table() %>%
pack_rows(index = IEXANV[["time"]] %>% table()) %>%
row_spec(1, bold = TRUE)
|
|
quarter 1
|
quarter 2
|
|
2025
|
|
Imports total
|
1.049.468.190
|
1.536.377.257
|
|
Commodities for use in aggriculture and farming total
|
6.228.086
|
8.881.736
|
|
Commodities for use in other businesses total
|
100.652.376
|
183.703.004
|
|
Commodities for use in building and construction total
|
297.555.309
|
334.238.641
|
|
Fuels and lubricants total
|
6.090.361
|
185.282.719
|
|
Machinery total
|
128.642.545
|
176.255.276
|
|
Transport equipments total
|
39.207.904
|
41.245.960
|
|
Commodities for final use total
|
464.148.513
|
599.065.381
|
|
Goods not elsewhere specified total
|
6.943.097
|
7.704.540
|
See the table in our Statbank: IEXANV
IEXBALMND_raw <-
statgl_url("IEXBALMND", lang = language) %>%
statgl_fetch(
month = px_all(),
transaction = px_all(),
time = px_top(1),
.col_code = TRUE
) %>%
as_tibble()
IEXBALMND <-
IEXBALMND_raw %>%
mutate(
month = month %>% str_to_sentence(),
month = month %>% fct_inorder(),
transaction = transaction %>% fct_inorder()
) %>%
filter(value != "Na") %>%
spread(transaction, value)
IEXBALMND %>%
select(-time) %>%
rename(" " = 1) %>%
statgl_table() %>%
pack_rows(index = IEXBALMND[["time"]] %>% table()) %>%
row_spec(1, bold = TRUE)
|
|
Balance
|
Export
|
Import
|
|
2025
|
|
Whole year
|
-308.564
|
2.277.281
|
2.585.845
|
|
January
|
209.561
|
561.308
|
351.747
|
|
February
|
-45.258
|
276.006
|
321.263
|
|
March
|
-76.217
|
300.241
|
376.458
|
|
April
|
-298.318
|
294.996
|
593.313
|
|
May
|
-149.281
|
282.854
|
432.135
|
|
June
|
50.947
|
561.877
|
510.929
|
See the table in our Statbank: IEXBALMND
IEXSITC_raw <-
statgl_url("IEXSITC", lang = language) %>%
statgl_fetch(
processing = px_all(),
transaction = 1:2,
time = px_top(2),
.col_code = TRUE
) %>%
as_tibble() %>%
filter(time != max(time))
IEXSITC <-
IEXSITC_raw %>%
filter(processing %>% str_detect("I alt|i alt|Katillugit|katillugit|total|Total")) %>%
mutate(
processing = processing %>%
str_remove_all("[:digit:]|\\-") %>%
trimws() %>%
fct_inorder(),
value = value |> prettyNum(big.mark = ".", decimal.mark = ",")
) %>%
spread(transaction, value) %>%
mutate_if(is.numeric, ~replace(., is.na(.), 0)) %>%
gather(var, val, -c(processing, time)) %>%
mutate(var = var %>% str_to_title()) %>%
spread(var, val)
IEXSITC %>%
select(-time) %>%
rename(" " = 1) %>%
statgl_table(replace_0s = TRUE) %>%
pack_rows(index = table(paste0("Kroner, ", IEXSITC %>% pull(time)))) %>%
row_spec(1, bold = TRUE)
|
|
Export
|
Import
|
|
Kroner, 2024
|
|
Total
|
5.211.739.808
|
6.791.831.863
|
|
Provisions and livestock, total
|
5.078.795.984
|
1.110.445.735
|
|
Alcoholic beverages and tobacco, total
|
53.167
|
332.528.803
|
|
Raw materials, inedible, total
|
13.290.752
|
48.393.511
|
|
Mineral fuels and lubricants etc., total
|
140.918
|
1.455.812.153
|
|
Animal or vegetable fats and oils, total
|
3.280
|
6.376.383
|
|
Chemicals and chemical products, total
|
3.107.821
|
410.718.020
|
|
Manufactured products mainlysemimanufactured products, total
|
11.038.996
|
1.133.044.759
|
|
Machinery and transport equipment, total
|
76.196.923
|
1.596.547.140
|
|
Manufactured products, total
|
24.564.032
|
654.057.798
|
|
Miscellaneous articles and transactions, total
|
4.547.935
|
43.907.560
|
See the table in our Statbank: IEXSITC